107農業試驗設計與統計分析研習會 (2017/10/23~24)

SAS-EG7.1統計分析軟體 相關與回歸分析

主講:呂椿棠 助教:楊滿霞 tang@tari.gov.tw ymh@tari.gov.tw

農業試驗所

SAS-EG Trainging data - corr-reg.xls

內含練習用工作表: multi-corr (4個變數資料相關分析) reg-1&2 (回歸分析一次&二次) multi-reg (複回歸分析)

◆SAS輸入格式:逐欄輸入處理標記、 各性狀變數數值

資料分析前的一般步驟

開啟SASEG7.1時的歡迎畫面

一、讀取資料檔-開啟已建的Excel檔: 檔案/開啟/資料

🕝 SA	S Enterprise Guide				
檔案	髦(F) 編輯(E) 檢視(V) 工作(K)	我的	最愛(A)	程式(P)	工具(T)
	新增(N)				
	開啟(O) ▶	۲	專案(P)	Ctr	l+0
	闌閉專案(C)		資料(D).		
E	儲存「專案」(S) Ctrl+S		資料勘查	i(X)	
	將「專案」另存為(A)		程式(G)		
1	匯入資料(I)		報表の		
►	執行「專案」(U)		箱在程式	i(S)	
	排程「専案」(H)			ube(U)	
	匯出(R) ▶		Informat	tion Map(п
	傳送至(D) ▶			ດ)	-y
11	發行(L)		ODBC(B)	_,)	
P _{A9}	「處理流程」的版面設定(G)		其他(R)		
	「處理流程」的預覽列印(W)	_	2410(FV-		

1.指定檔案所在位置

📄 開啟資料						
瀏覽 搜尋 SAS 資料夾						
查詢(I): 🌗	106年統計研習(回歸) 🔹 ፍ 🗲 َ 🔂 🗶 🍃 🖽 🖛 🍤					
 	# #型 大小 参考資料 参考資料 SAS-EGTrainingData-corr-reg.xls 注意:資料檔名 1.盡量用英文 2.不要有空格, 3.中文檔名在SAS某些畫面會產 生亂碼,但不影響分析結果! 4.檔名過長可能會無法匯入成功					
	檔案名稱(N): <u>\$A\$-EG TrainingData-con-reg.xls</u> 檔案類型(T): 所有已知的資料檔案 (*.sas7bdat;*.sas7bvew;*.sd2;*.mdb;*.accdb:*.xls;*.xlsx;*.xlsm; ▼ 開啟(O) 取消					

2.勾選資料所在的工作表

🛃 從 SAS-EGTrain	ningData-corr-reg.xls 匯入資料				×		
1 /4 指定	2資料	3	從 SAS-E	GTrainingData-corr-	reg.xls 匯入資料		×
對於其他需要使用 成 SAS 資料檔案。	ISAS 資料檔案以進行資料分析和報表的工作	2	2 /4	選取資料來源			<u>S</u> .sas.
		-2	毀取範圍				_
■ 來源資料檔案 ── 位罢の):	+ 1 # 世 安 2. (在	٩) 使用工作	作表(₩)		📝 範圍的第一列包含欄位名稱(M	
位且(J): 檔案路徑(P): 資料類型(T):	平磁福系示統 D:Work Info/計畫'SAS'106年統計研習(回歸 Excel 活頁簿		reg-1& multi-R	2 EG		📄 重新命名欄以符合 SAS 命名規	則(R)。
輸出 SAS 資料集 SAS 伺服器(S):	SASApp						
資料館(R): 皆料集(A):	WORK SAS EGTrainingData corr reg		🔳 使用	月工作表內特定範圍的(諸存格(\$)		
			左上	_方儲存格(I):			
			右下	「方儲存格(L):			
				必安時成開が見配	重設節圍(A)		
		e) 使用預:	上 先定義的命名範圍(P)			
	<上一步(B) 下一步(M) > [
<u> </u>				<上一	-步(B) 🕇 下一刻	步(N) > 完成(F) 取消	說明

3.指定檔案開啟選項

🗗 î	從 SAS-EGTra	iningData-co	orr-reg.xls 匯入資	科		
:) /4 定	義欄位特性			<u>S</u> .sas.	
選耳	V欄並定義特 性	ŧ(S):			₩ Kass-EGTrainingData-corr-reg.xls 匯入資料	×
Ir	c 來源名稱	名稱	標籤	類型		<u>ess</u>
	x1	xl	x1	數字 I		9 .000.
] x2	x2	x2	數字 I		
] x3	х3	x3	數字 I		
] x4	x4	x4	働字 I	■ 盡可能使用 PC 檔案的 SAS/ACCESS 介面」匯人資料(P)。	
					■ 從文字型資料檔案移除可能導致傳輸錯誤的字元(R)。	
	全選(A)	全部清除				
		6		-#m		
		Ľ		-2/(A) >		
					<上一步(B) ▼ 下一步(B) 序成(B) 取消	「覚明」

4.指定工作表資料預覽

	程式碼 📋 記録	巖檔 🚟 輸出資	料	
\$ 5	<u>民</u> 修改工作(Y)	<mark>鞼</mark> 篩選和排序	(L) 🏪 查詢產生	器(Q) 資料(D)
	🔞 x1	100 x2	🔞 x3	🔞 x4
1	12	30	4	54
2	14	34	6	60
3	20	30	5	70
4	25	35	6	80
5	30	40	8	100
6	35	50	10	120
7	40	60	12	134
8	50	76	15	150
9	55	80	16	145
10	60	90	18	152

結果如以下畫面: 左側小視窗 専案樹狀結構

□ 虚理流程) 左鍵點兩下 □ SAS-EG TrainingData-corr-reg.xls

🚮 匯入資料 (SAS-EG TrainingData-con eg.xls[multi-corr])

右侧小視窗

處理流程 →		
▶ 執行(R) - ■	停止(S) 匯出()	() - 排程(D) - │ 縮加
SAS- EGTrainingData -corr-reg.xls	匯入資料 (SAS EGTrainingDat	從 SAS- EGTrainingData -corr-reg.xds 匯

<u>資料範例說明</u>

【試驗內容】 四個變數X1、X2、X3、X4的調查資料

【工作表】 multi-corr

【分析內容】 將此4個變數進行兩兩之間的散佈圖繪製

1. 由散佈圖檢視兩變數間的關係

	工作(K) 我的最愛(A)	程式(P) 工具(T) 說明(H) 💾 - 🚔 - 🤇
専案樹狀結構	瀏覽(B)	→ x 處理流程 •
□ ⁸ cg 處理流程 白	資料(D) 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	▶ 執行(R) ▼
	图形(G)	▶ <u>11</u> 長條圖精靈(H)
	ANOVA(A) 迴歸(R)	▶ ◎ 圆形圖精靈(E)
	多變量(M) 友活分析(S)	▶ ◎ 圓形圖(P)
	功能(Y)	/ 折線圖精靈(W) ▶ / / / 折線圖(L)
	管制圖(C)	▶ <u> </u> 散佈圖(S)
		🔆 散佈圖矩陣(C)

2. 選擇繪製散佈圖的類別

在「工作角色」畫面內指定變數的角色

注意:只能一次指定一個變數給水平或垂直的工作角色,目前有4個變數,要兩兩互相比較,則 要重複6次的散佈圖繪製工作。

3. 產生散佈圖的處理流程圖

由x1與x2、x3的散佈圖發現x2、x3的 值,有隨x1的增加而上升的趨勢

三、簡單相關分析

<u>資料範例說明</u>

【試驗內容】 四個變數X1、X2、X3、X4的調查資料

【工作表】 multi-corr

【分析內容】 將此4個變數進行相關分析

1. 簡單相關分析:工作/多變量/相關

在「資料」畫面內直接用滑鼠拖曳或按箭頭按鈕將要指 派的變數拉到右側工作角色框內的"分析變數"(同時指 派多個分析變數)

(2)在「選項」選單挑選相 關類型中的"Pearson(P)"
(3)在「結果」選單挑選下 圖打勾的項目
(4)按"執行"

2. 分析結果解讀 完成相關分析後 的處理流程圖

4個變數相關分析後的相關矩陣圖,包括倆倆變 數的相關係數與其相關 係數機率值。

Pearson 相關係數, N = 10 Prob > |r| (位於 H0 底下): Rho=0

	x1	x2	x3	x4
x1	1.80000	0.97417	0.98350	0.97341
~	0.07447	<.0001	<.0001	<.0001
ΧZ	0.97417 <.0001	1.00000	<.0001	<.0001
x3	0.98350	0.99510	1.09000	0.96041
	<.0001	<.0001		<.0001
x4	0.97341	0.93972	0.96041	1.08000
	<.0001	<.0001	<.0001	

3. 相關分析結果-4個變數的基本統計量

相關分析

CORR 程序

4 艷數: x1 x2 x3 x4

	簡單統計值							
變數	Ν	平均值	標準差	總和	最小值	最大值		
x1	10	34.10000	16.95386	341.00000	12.00000	60.00000		
x2	10	52.50000	22.59425	525.00000	30.00000	90.00000		
x3	10	10.00000	5.01110	100.00000	4.00000	18.00000		
x4	10	106.50000	38.55516	1065	54.00000	152.00000		

每個相關配對的散佈圖

22

四、簡單直線回歸分析

資料範例說明

【試驗內容】

欲探討水梨果園的六個氮肥施用量X(kg)和可溶性 固形物含量Y(%)間之關係。

【工作表】reg-1&2

【分析內容】 簡單直線回歸

$$Y_i = \alpha + \beta X_i + \varepsilon_i \quad , i = 1, \dots, n$$

新增「處理流程」(如下圖)

載入資料檔,記得先點選載入的Excel資料工作表reg-1&2。(如投影片第4-7頁) reg-1&2 工作表預覽

	_			
	1	固形物含量(%)	🔞 施氮量(kg)	💿 施氮量-二次
1		16.2	0	0
2		15.7	5	25
3		15.4	10	100
4		15.2	15	225
5		14.3	20	400
6		13.9	25	625

1. 常態分布檢測:工作/描述/分配分析

Ιľ	ŧ(K)	我的最愛((A) 程	式(P)	工具(T)	說明(H)	1
	瀏覽	i(B)					
	資料	(D)	۲	停止	±(S)│匯出(X) - 排程	(D) ·
	描述	<u>t(B)</u>	Þ		清單資料(L)	
	圖形	?(G)	•	Σ	摘要統計構	靈(M)	
	ANG	DVA(A)	Þ	Σ	摘要統計(S	i)	
	迴歸	1(R)	Þ		摘要表精靈	(B)	
	多變	建(M)	•		摘要表(T)		
	1子/in 功能	いかが(S) 	•		清單報表稿	靈	
	管制	l圊(C)			特徴化資料	l(H)	
16	Pare	・・ eto 周表(P).		Lib	分配分析(L	J)	
					軍因子次影	ι(O)	
	時間	序列(T)	•		表格分析(A	Ŋ	

(1)在「資料」畫面內將調查性狀指派到"分析 變數" (可同時指派多個分析變數)

注意:資料的分布測驗是看整套資料,因此無須指定分類變數!!

(2)在「常態」畫面內勾選常態

常態性測驗之結果解讀-配適度測驗 (原始資料)

Parameters			
參數	符號	估計值	判斷準則:
Mean	Mu	15.11667	p value >0.05 即不顯著。
Std Dev	Sigma	0.865833	表示符合常態

Goodness-of-Fit Tests for Normal Distribution

檢定	統計值		р值	
Kolmogorov-Smirnov	D	0.20500424	Pr > D	>0.150
Cramer-von Mises	W-Sq	0.03717239	Pr > W-Sq	>0.250
Anderson-Darling	A-Sq	0.22478918	Pr > A-Sq	>0.250

常態性測驗之結果解讀-圖示 (原始資料)

直方圖

2. 簡單直線回歸分析:工作/回歸/線性回歸

🐼 SAS Enterprise Guide		
檔案(F) 編輯(E) 檢視(∨	工作(K) 我的最愛(A)	程式(P) 工具(T) 說明(H) 🗎 🛨
専案樹狀結構	瀏覽(B)	★ x 匯入資
■ ⊷‱ 處理流程	資料(D) 描述(B)	▶ 🗒 程 ▶ [])
□-篇 従 SAS-EG TrainingData X1X2 散佈圖 ▲: X1X3 散佈圖	圖形(G) ANOVA(A)	▶ /* ▶
		▶ <u>※</u> HP 線性迴歸(H)
□ 器 SAS-EG TrainingData-co ■ 器 SAS-EG TrainingData-co ■ 器 匯入資料 (SAS-EG	多變重(Ⅳ) 存活分析(S)	▶ <u>線性</u> 迴歸(L) ▶ <u>济</u> 非線性迴歸(N)
	功能(Y)	▶ Liii 羅吉斯迴歸(S)
	官利回(C) Fareto 圖表(P)	▶ <u>通</u> 廣義線性模型(G)
	時間序列(T)	•

在「工作角色」內用滑鼠拖曳(或按箭頭按鈕)將固形物含量 和施氮肥分別指派到右側工作角色框內的"應變數"和"解釋變 數"

繪出變數間的散佈圖與殘差圖,可做回歸模式的檢測參 考。

利用求得之直線回歸方程式進行反應變數預測值之估計

3.直線回歸分析結果解讀-ANOVA 直線回歸分析的 處理流程圖 回歸變方分析表: 假說H₀:β=0 H₁:β≠0

讀取的觀測值數目 6 使用的觀測值數目 6 逆果數分析				P<0.0 表示打 此回島)] 妾受H ₁ 帚式存	, 在				
來源		自由	腹	平方	和	平均 平	值方	F值	Pr > F	
模型			1	3.611	57	3.611	57	105.63	0.0005	\supset
誤差			4	0.136	76	0.034	19			
已校正	的總計		5	3.748	33					
根 MSE 0.18491 R 平方 0.9635										
	應變平均	旬值	15.11667		調整 R 平方		i 0.9544	Ļ		
	變異係數	牧	1.3	22320		决	定	係數為	50.96	٦

直線回歸方程式的截距與回歸係數及其 t檢定的顯著性值

當 $t > t_{\alpha/2,n-2}$ 拒絕H₀,表示該回歸係數顯著存在。

回歸方程式 Y=16.25 - 0.09**X

反應變數、解釋變數與反應變數預測值的繪圖

殘差分析:當殘差值圖形以e=0為中心線兩邊上下的 區域對稱分布,表示該回歸線與資料的配合程度。

利用此回歸方程式計算在各解釋變數對應點上的反應變數預測值。

固形物含量 <mark>(%)</mark>	predicted_固形物含量(%)
16.2	16.2524
15.7	15.7981
15.4	15.3438
15.2	14.8895
14.3	14.4352
13.9	13.9810

五、二次效應回歸分析

<u>資料範例說明</u>

【試驗內容】

欲探討水梨果園的六個氮肥施用量X(kg)和可溶性 固形物含量Y(%)間之關係,現要探討是否存在氮 肥的二次效應。

【工作表】reg-1&2

【分析內容】 二次效應回歸分析

 $Y_i = \alpha + \beta_1 X_{1i} + \beta_2 X_{2i}^2 + \varepsilon_i$, i = 1...n

1. 處裡流程>線性回歸 按右鍵「修改線性回歸」

在「資料」內用滑鼠拖曳(或按箭頭按鈕)將「施氮量-二次」指派到右側工作角色框內的"解釋變數"。

其餘設定內容與直線回歸分析相同

2. 二次效應回歸分析結果解讀-ANOVA

回歸變方分析表:假說 $H_0: \beta_1 = \beta_2 = 0$ $H_1: G - G \neq 0$

	P<0.01					
來源	自由度	平方和	平均值 平方	F值	Pr > F	表示接受H1, 此回歸式存在
模型	2	3.65455	1.82727	58.4 5	0.0040	
誤差	3	0.09379	0.03126			
已校正的總計	5	3.74833				

根 MSE	0.17681	R 平方	0.9750
應變平均值	15.11667 ⁽	調整 R 平方	0.9583
變異條數	1.16964		

決定係數為0.96

二次回歸方程式的截距與回歸係數及其**t**檢 定的顯著性值

回歸方程式的截距 一 參數估計值					
變數	自由度	参數 估計值	標準 誤差	t 值	Pr > t
Intercept	1	16.13929	0.16025	100.71	<.0001
施氮量(kg)	1	-0.05693	0.03015	-1.89	0.1554
施氮量-二次	1	-0.00136	0.00116	1.17	0.3256

回歸方程式的回歸係數與t檢定的顯著性值,此兩個回歸係數之P值皆大於0.05,表示此兩個回歸係數不存在, 所以此回歸方程式不適用,即此試驗的氮肥二次效應 不存在。

資料範例說明

【試驗內容】

研究身高大致相同的男人血管收縮壓(y)與他們的身高(x1)、腰圍(x2)、體重(x3)和年齡(x4)的關係,共有13個對象的資料

【工作表】 multi-reg

【分析内容】

這4個解釋變數是否都能用來預測反應變數血管 收縮壓(y),若否,應保留哪幾個解釋變數。

 $Y_i = \alpha + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki} + \varepsilon_i$

新增「處理流程」(如下圖)

載入資料檔,記得先點選載入的Excel資料工作 表multi-reg。(如投影片第4-7頁) multi-reg 工作表預覽

1) 身高(cm) 🔞	腰圍(CM)	🔞 臢重(Kg)	🔞 年齡(歲)	🔞 血壓(mm/Hg)Y
1	170	80	52	50	120
2	155	99	83	21	141
3	170	95	71	20	124
4	168	80	65	30	126
5	170	75	58	32	117
6	176	70	61	50	129
7	168	65	49	60	123
8	165	75	58	50	125
9	172	83	70	40	132
10	178	66	53	55	123
11	166	74	64	45	132
12	158	95	90	40	155
13	166	90	85	22	147

1. 常態分布檢測:參考投影片第26~31頁

Parameters for Normal Distribution				
參數	符號	估計值		
Mean	Mu	130.3077		
Std Dev	Sigma	11.13092		

Goodness-of-Fit Tests for Normal Distribution						
檢定	ź	統計值	p值			
Kolmogorov-Smirnov	D	0.20880980	Pr > D	0.122		
Cramer-von Mises	W-Sq	0.11472668	Pr ≻ W-Sq	0.066		
Anderson-Darling	A-Sq	0.64288758	Pr > A-Sq	0.076		

2. 複回歸分析:工作/回歸/線性回歸

/ 迴歸分析專案 - SAS Enterprise Guide						
檔案(F) 編輯(E) 檢視(V	工作(K) 我的最愛(A)	程式(P) 工具(T) 說明(H) │ 🎦 ▾				
專案樹狀結構	瀏覽(B)	★ x				
 ■ 続g 處理流程 ■ 新 SAS-EG TrainingData-co ● 新 MAS-EG TrainingData-co ● 新 位 SAS-EG TrainingData 	資料(D) 描述(B) 圖形(G) ANOVA(A)	▶ ▶ x]) ▶ 1				
	迴歸(R)	▶ HP 線性迴歸(H)				
□ ·••• SAS-EG TrainingData-co □ · 新 SAS-EG TrainingData-co □ ····································	多變重(M) 存活分析(S)	 ▶ 線性迴歸(L) ▶ 旅 ▶ 非線性迴歸(N) 				
 □ 課 従 SAS-EG TrainingData ※ 線性迴歸 ● 後 線性迴歸 (二次) ● 後 處理流程 (3) 	功能(Y) 管制圖(C) Mareto 圖表(P)	▶ <u> </u> 羅吉斯迴歸(S) ▶ <u> </u> HP Logistic 迴歸(P) 业 廣義線性模型(G)				
□-酚 SAS-EG TrammgData-co 	時間序列(T) 資料採礦(N)	▶ (G]) 8 ▶ 9				
	OLAP(O)	▶ 10				

在「資料」內用滑鼠拖曳(或按箭頭按鈕)將血壓和 身高、腰圍、體重、年齡分別指派到右側工作角色框 內的"應變數"和"解釋變數"

(3)

進行回歸模式之解釋變數的 共線性與自我相關的檢測

繪出變數間的散佈圖與殘差圖,可做回歸模式的 檢測參考。

利用求得之直線回歸方程式進行反應變數預測值之估計

3. 複回歸分析結果解讀-ANOVA

回歸變方分析表:假說 $H_0:\beta_1=\beta_2=\beta_3=\beta_4=0$ $H_1:其中一個\neq 0$

根 MSE	1.96470	R 平方	0.9792	
應變平均值	130.30769	調整 R 平方	0.9688	決定係數為0.97
變異 係數	1.50774			

複回歸方程式的截距與各回歸係數及其 t檢定的顯著性值

共線性診斷									
		450.04-		82 19	誕異的比例				
數目	特徵值	索引	Intercept	身高(cm)	腰圍(CM)	體重(Kg)	年齢(歳)		
1	4.85582	1.00000	0.00001411	0.00002606	0.00010598	0.00034918	0.00116		
2	0.13198	6.06560	9.300107E-7	0.00000571	0.00237	0.01335	0.15165		
3	0.00955	22.55338	0.00478	0.01991	0.00085563	0.37952	0.39371		
4	0.00244	44.64628	0.00208	0.03971	0.67255	0.58222	0.21169		
5	0.00021537	150.15598	0.99312	0.94034	0.32411	0.02456	0.24180		

共線性診斷條件索引>100,代表此 變數共線性大,應移除回歸式

處裡流程>線性回歸 按右鍵「修改線性回歸」

1. 在「資料」內用滑鼠拖曳(或按箭頭按鈕)將「年齡」 拉離解釋變數

2.逐步回歸法之變數選取過程

第一個解釋變數 體重進入模式中,且模式成立。

逐步選擇: 步驟 1

已輸入變數 體重(Kg): R 平方 = 0.8145 和 C(p) = 11.3143

變異數分析								
來源	自由度	平方和	平均值 平方	F值	Pr > F			
模型	1	1211.00800	1211.00800	48.31	<.0001	b		
誤差	11	275.76123	25.06920					
已校正的總計	12	1486.76923						

譴數	參數 估計值	標準 誤差	第二型 SS	F值	Pr > F	
Intercept	79.87593	7.38775	2930.54498	116.90	<.0001	
體重(Kg)	0.76323	0.10981	1211.00800	48.31	<.0001	

第二個解釋變數 腰圍再進入模式中,且模式成立。

逐步選擇:步驟2

變異數分析								
來源	自由度	平方和	平均值 平方	F值	Pr > F			
模型	2	1331.55083	665.77541	42.89	<.0001			
誤差	10	155.21840	15.52184					
已校正的總計	12	1486.76923						

變數	參數 估計值	標準 誤差	第二型 SS	F值	Pr ≥ F
Intercept	97.58628	8.61286	1992.62757	128.38	<.0001
腰圍(CM)	-0.55975	0.20086	120.54283	7.77	0.0192
體重(Kg)	1.17746	0.17193	727.97456	46.90	<.0001

當全部變數都依設定之機率值0.15為標準 篩選,最後只保留二個解釋變數<u>體重與腰圍</u> 在模式中。

留在模型中的所有變數都是顯著於 0.1500 層級。

沒有其他變數符合輸入至模型中的 0.1500 顯著層級。

	逐步選擇 的摘要									
步驟	輸入的 變數	移除的 變數	數目 Vars In	偏 R 平方	模型 R平方	C(p)	F值	Pr > F		
1	體重(Kg)		1	0.8145	0.8145	11.3143	48.31	<.0001		
2	腰圉(CM)		2	0.0811	0.8956	4.4344	7.77	0.0192		

3.逐步回歸分析結果解讀-ANOVA

	變異數分析								
來源		自由度	E 3	平方和	平均值 平方	Ĩ テ F値	Pr > F	-	
模型		:	2 1331.	55083	665.7754	1 42.89	<.0001	D	P<0.01,表示接受
誤差		1	0 155.	21840	15.5218	4			П1, 此回蹄式仔在
已校正的	肉總計	1:	2 1486.	76923					
	根 MS 應變 一 變異像	E F均值 &數	3.939 130.307 3.023	769 調 444	平方 整 R 平方	0.8956 0.8747) Y=	=97.	回歸方程式 .59 + 1.18**體重 -0.56**腰圍 R ² =0.87
截距與	截距與回歸係數 參數估計值								
變數	自自	腹	参數 估計值	標準	準 差 t 值	Pr > t	變異數 膨脹	VI	F
Interce	pt	1 07	7.58628	8.6128	36 11.33	<.0001			

-2.79 0.0192 3.95926

6.85 <.0001 3.95926

-0.55975 0.20086

1.17746 0.17193

1

1

腰圉(CM)

體重(Kg)

共線性診斷									
		修建							
數目	特徵值	索引	Intercept	腰圍(CM)	體重(Kg)				
1	2.97890	1.00000	0.00179	0.00050393	0.00099748				
2	0.01818	12.80141	0.51344	0.00378	0.19873				
3	0.00292	31.91729	0.48477	0.99571	0.80027				

共線性診斷條件索引皆<100

反應變數與反應變數預測值的散佈圖

殘差分析:當殘差值圖形以e=0為中心線兩邊上下的 區域對稱分布,表示該回歸線與資料的配合程度。

利用求得之回歸方程式計算在各解釋 變數對應點上的反應變數預測值。

血壓(mm/Hg)Y	predicted_血壓(mm/Hg)Y	
120	114.034	K
141	139.900	
124	128.010	
126	129.341	
117	123.898	
129	130.229	
123	118.898	
125	123.898	
132	133.549	
123	123.048	
132	131.522	
155	150.381	
147	147.293	

回歸方程式	
Y=97.59 + 1.18* 體重 -0.56** 周	要圍

原解釋變數值之反應變數預測值 Y=97.59 + 1.18X52-0.56X80=114.15

其他解釋變數之反應變數預測值 體重=80kg,腰圍=90cm Y=97.59 + 1.18X80-0.56X90= 141.59

